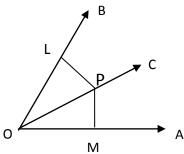
ST. XAVIER'S SENIOR SECONDARY SCHOOL, DELHI-54

Class: 7 FINAL UNIT TEST 2014-2015 Marks: 20
Date: 14.11.14 MATHS Time: 45 Mins.

Note: All the answers to be done on the answer sheet.

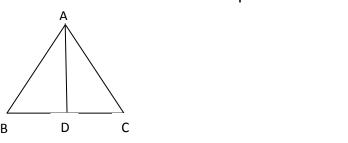
I. Fill in the blanks: $(\frac{1}{2}x6 = 3)$

- a) Two circles are congruent if their _____ are equal.
- b) If $\triangle ABC \cong \triangle PQR$ then the side corresponding to side $\overline{BC} = \underline{\hspace{1cm}}$
- c) The cofficient of a in –ab²c is _____
- d) If we subtract -2y from 5y we get _____
- e) The value of x^2 –7 if x = 4 is _____
- f) The degree of the expression $x^2y^2z^2-6xyz$ is _____
- II. Add the following expressions: $(1\frac{1}{2})$


$$x - 3y + 4z, -2x + y - 8z, 5x - 2y - 3z$$

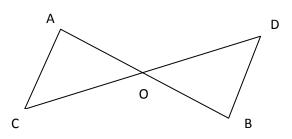
- III. Subtract $x^2 y^2$ from $2x^2 3y^2 + 6xy$ (1\frac{1}{2})
- IV. Find the product:

a)
$$-6x^2$$
yz x $\left(\frac{2}{3}xy^2z^2\right)$ (1 $\frac{1}{2}$)


b)
$$-3a^2 \times (2abc^2 - 4a^2bc - 5ab^2c)$$
 (2)

- V. If P = 2a 3b + 4c and Q = a + 3b 4c then find the value of 2P Q. $(2\frac{1}{2})^2$
- VI. In the given figure $\overline{PL} \perp \overline{OB}$ and $\overline{PM} \perp \overline{OA}$ such that $\overline{PL} = \overline{PM}$. Is $\Delta PLO \cong \Delta PMO$? Give reasons in support of your answer. $(2\frac{1}{2})$

VII In an isosceles $\triangle ABC$ $\overline{AB} = \overline{AC}$ and D is the midpoint of \overline{BC} . Prove that $\triangle ADB \cong \triangle ADC$.


 $(2\frac{1}{2})$

VII. Two line segments \overline{AB} and \overline{BC} bisect each other at point O then prove that

a) $\triangle AOC \cong \triangle BOD$

b)
$$\overline{AC} \parallel \overline{BD}$$
 (3)
