General Instructions:

- i) Attempt all the questions.
- ii) This question paper consists of 31 questions divided into four sections A, B, C and D. Section A comprises of 4 sections of 1 mark each, section B comprises of 6 questions of 2 marks each, section C comprises of 10 questions of 3 marks each and section D comprises of 11 questions of 4 marks each.

SECTION -A (1 x 4 = 4 marks)

- 1. Find the distance of point (-4, -3) from x-axis.
- 2. In the given figure AB||CD. Find the value of x.

- 3. Write 4 rational numbers between $\frac{-2}{5}$ and $\frac{-3}{5}$.
- 4. Using remainder theorem, find the remainder when $3x^3 2x^2 + x + 1$ is divided by x + 1.

SECTION – B $(2 \times 6 = 12 \text{ marks})$

- 5. If a point C lies between two points A and B such that AC = BC then prove that AC = $\frac{1}{2}$ AB. Explain by drawing the figure.
- 6. Factorize $2x^2 + 3y^2 + 8z^2 + 2\sqrt{6}xy + 4\sqrt{6}yz + 8zx$.
- 7. Write in which quadrant or on axis do the following points lie: a) (-5, 2) b) (0, -9) c) (3, -4) d) (-6, -9)
- 8. In the given figure, if AB = BCand BX = BY, then show that AX = CY.

10. Compare the two exponents $(625)^{\frac{1}{4}}$ and $(16)^{\frac{3}{4}}$.

SECTION – C (3 x 10 = 30 marks)

- 11. Express $0.4\overline{56}$ in the form of $\frac{p}{q}$, where p and q are integers and q $\neq 0$.
- 12. Plot the points A (0,3) , B (5,3) , C (5,0) and D (1,0) on the graph. Name the figure so obtained. Find whether the point (2, 2) lies inside the figure or not.
- 13. In the given figure, POQ is a line. Ray OR is perpendicular to line PQ. OS is another ray lying between rays of OP and OR. Prove that $\angle ROS = \frac{1}{2}(\angle QOS - \angle POS)$. 14. Factorize $2x^3 + 7x^2 - 3x - 18$. 15. D is a point on side BC of $\triangle ABC$ such that AD = AC. Show that AB > AC. B = D
- 16. The measures of the adjacent sides of a field which is in the shape of a parallelogram are 12.5 m and 8.5 m. If one of the diagonals is of length 6 m, find area of the parallelogram. Hence find the length of altitude on the base 12.5 cm.

D

17. The sides AB and AC of Δ ABC are produced to point E and D respectively. If the bisectors BO and CO of \angle CBE and \angle BCD respectively

meet at point O, then prove that $\angle BOC = 90^{\circ} - \frac{1}{2} \angle BAC$.

- 18. Simplify: $\frac{1}{1+\sqrt{2}} + \frac{1}{\sqrt{2}+\sqrt{3}} + \frac{1}{\sqrt{3}+\sqrt{5}}$
- 19. Factorize: $27a^3 216b^3 c^3 54abc$.
- 20. It is given that $\angle XYZ = 84^{\circ}$ and XY is produced to a point P. Draw a figure from the given information. If ray YQ bisects $\angle ZYP$, then find $\angle XYQ$ and reflex $\angle QYP$.

SECTION – D (4 x 11 = 44 marks)

- 21. Divide the polynomial $3x^4 4x^3 3x 1$ by x 1, find its quotient and remainder and hence verify the division algorithm.
- 22. Prove that the angles opposite to the equal sides of an isosceles triangle are equal.

23. If
$$x = 3 - 2\sqrt{2}$$
, check whether $x - \frac{1}{x}$ is rational or irrational. Check the same for $(x + \frac{1}{x})^2$

AB is a line segment. C and D are the points on opposite sides of AB such that each of them is equidistant from the points A and B. Show that the line CD is the perpendicular bisector of AB.
A father distributed his land between his two children as ΔACD and ΔBCD.
What value/s he is depicting for his children?

In the given figure, BE is the bisector of $\angle B$ and CE is the bisector of exterior $\angle ACD$, which intersect at E. Prove that $2\angle BEC = \angle BAC$.

В

E /

- 26. Show that (2x 3) is a factor of $2x^3 9x^2 + x + 12$. Also find the remaining factors.
- 27. Simplify $(2a + 3b)^3 (2a 3b)^3$.
- 28. Represent $\sqrt{8.4}$ on the number line.
- 29. In the right triangle ABC, right angle at C, M is the mid point of hypotenuse AB. C is joined to M and produced to a point D such that DM = CM. Point D is joined to point B. Show that
 - i) $\Delta AMC \cong \Delta BMD$
 - ii) $\angle DBC$ is a right triangle
 - iii) Δ DBC $\cong \Delta$ ACB
 - iv) $CM = \frac{1}{2}AB$
- 30. Verify that

i)
$$x^3 + y^3 + z^3 - 3xyz = \frac{1}{2} (x + y + z)[(x - y)^2 + (y - z)^2 + (z - x)^2]$$

ii)
$$x^3 + y^3 = (x + y) (x^2 - xy + y^2)$$

- 31. Two sides AB and BC and median AM of one triangle ABC are respectively equal to side PQ and QR and median PN of Δ PQR. Show that:
 - i) $\Delta ABM \cong \Delta PQN$
 - ii) $\Delta ABC \cong \Delta PQR$

D

R

M

-X-X-X-X-X-X-X-